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COVID-19 VIRUS ADJUSTMENTS

During normal times all meetings are on the lower 
level of the Highlands Crossing Center in Bella Vista. 
For the month of June we will continue to suspend in-
person meetings and classes and conduct on-line 
meetings using Zoom over the Internet. 

To attend a Zoom meeting or class, you need Internet 
access and a device with the Zoom application 
installed.

MEETINGS

(Online) Board Meeting:  June 8, 6pm, using
Zoom

(Online) General Meeting:  June 8, 7pm, "A
Look  At  Google  Docs"  Zoom  meeting  access
information will be emailed to membership the week
before.    Visitors  or  Guests  may  contact  our
Membership  Chair  for  Zoom  meeting  details  at
membership@bvcomputerclub.org

Genealogy SIG:  CANCELED for June. 
(3rd Saturday). 
 

HELP CLINICS

No June Help Clinics at John Ruehle center 

Members may request Remote Help on our website
at https://bvcomputerclub.org at menu path

Member Benefits ►Remote Help .

MEMBERSHIP
Single  membership  is  $25;  $10  for  each  additional
family member in the same household. Join by mailing
an  application  (from  the  web  site)  with  check,  or
complete an application and pay at any meeting. 
 It is now also possible to Join or Renew membership
on line on our website at https://bvcomputercub.org at
menu path  Get Involved ►Join/Renew .   Payment
may  be  by  Credit  Card,  or,  if  you  have  a  PayPal
account,  by  whatever  means  you  have  defined  on
PayPal.

CLASSES
(Online)  "Using  Windows  10"  –  Joel  Ewing,
Wednesday, June 24, 9am - noon.

Advance sign up required for each listed class: Contact
Grace:  email  to  edu@bvcomp  uter  club.org  ,  text  469-
733-8395, call 479-270-1643,  or sign up at the General
Meeting.   Classes   are  free  to  Computer  Club
members.  Class access information will be emailed to
those signed up for the class the day before class.

Check the monthly calendar and announcements 
for any last minute schedule changes at 
http://bvcomputerclub.org  .
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HOW TO TEACH A COMPUTER TO SOLVE SUDOKU PUZZLES
By Joel Ewing
President, Bella Vista Computer Club
President (at) bvcomputerclub.org

I first became aware of Sudoku puzzles several decades back when several of my co-
workers were regularly solving the puzzles in the morning paper.  The classic Sudoku
puzzle is a 9x9 grid of cells, each one of which can contain one of the digits 1 to 9, further
sub-divided into nine 3x3 grids of cells.   Given a starting grid, like the one to the right,
the object is to fill in all the empty cells so that each row, each column, and each 3x3 grid
contains all the numbers 1 to 9 in some order.  The published puzzles are supposed to
have one unique solution, but you could easily devise a puzzle variant in which multiple
solutions are possible (by just omitting a number from the original puzzle).

There are no doubt many books or articles available by now about solving Sudoku puzzles, but I preferred finding
my own approach.   Not being sure at first whether there would always be a unique solution I tried to think of how
an automated approach might find all possible solutions.  I will attempt to describe the general algorithm used for 
an automated approach without going into the implementation details.  These techniques can also be applied to a 
manual solution, but may be tedious.

The first step is to come up with a process, or "algorithm", that is guaranteed to find a solution,  or terminate if 
none exists, and which is practical.  

An example of a process that will clearly work and eventually terminate is an exhaustive search:  take the first 
empty cell, create 9 new puzzles, each with a different  value 1 to 9 in that cell;  if all the cells are filled, check if 
it obeys the rules:  if so, a solution is found, if not discard.  If some cells are still empty, then try to solve the 
resulting puzzle by the same technique.   For the example puzzle, this technique results in 957 possible board 
combinations to test, which is MANY times the age of the Earth in nanoseconds, so it clearly is not practical.

A much more efficient process can be created by eliminating any cell value choices at each step that clearly 
cannot lead to a solution.  If the first cell chosen to fill is the upper-left cell (row 1, column 1), then values already
in the same row, column, and box immediately eliminate choosing 2, 4, or 7 for cell (1,1), so the possible 
candidates for cell (1,1) are among the digits 135689 .  Whichever of those values we choose to try for cell (1,1), 
potentially reduces the possibilities for all other empty cells in the same row, column, and box.  There is no easy 
way to estimate the number of choices involved to reach a solution, but there is reason to hope this would lead to 
a practical solution.  This is still an exhaustive search, just with elimination of unproductive paths as early as  
possible.

When solving a Sudoku puzzle by hand, you don't process the empty cells in order, but try to select cells to work 
on by intuition and recognizing patterns.  In the above process, the order of choosing empty cells to fill is not 
important as long as it is well-defined.  Starting with cell (1,1) may not be a good choice:   in the worst case we 
might choose 5 values that didn't work before succeeding on the last.  Let's improve the odds by finding a cell that
has fewer possible choices.



While it is tedious to determine by hand the candidate list for each empty cell, for a program this is trivial once 
the process is defined for a single cell.   Figure 2 below shows the initial status for the example puzzle, where "0" 
followed by a string of digits is a candidate list for that cell, and a single non-zero digit is the value already set for 
a cell.   Note that the candidate list for cell (1,1) is indeed "135689" as previously discussed.

 0135689    4          0169       01279      012379     012379     078        01578      0125789   
 01589      0589       7          01249      0129       6          08         0158       3         

 0139       039        2          8          5          01379      4          6          0179      

 023679     1          0469       024679     0236789    0234789    5          03478      04678     

 03679      0369       8          0145679    013679     013479     2          01347      01467     

 02367      0236       5          012467     0123678    0123478    03678      9          014678    

 02689      7          3          0269       4          5          1          08         068       

 4          02568      016        3          012678     01278      9          0578       05678     

 015689     05689      0169       01679      016789     01789      03678      2          045678

                                   Figure 2    

One pattern should immediately stand out.   Note that for some cells, namely (2,7) and (7,8), there is only a single 
candidate ("08" in both cases).  If there is a solution, clearly any cell with only one possible value must be 
assigned that value.  So, modify the process to first handle all the cells with a single candidate, assign that value to
the cell and re-compute the candidate lists for all empty cells in the same  row, column and  sub-grid, producing in
this case:

 0135689    4          0169       01279      012379     012379     07         0157       012579   
 0159       059        7          01249      0129       6          8          015        3         

 0139       039        2          8          5          01379      4          6          0179      

 023679     1          0469       024679     0236789    0234789    5          0347       04678     

 03679      0369       8          0145679    013679     013479     2          01347      01467     

 02367      0236       5          012467     0123678    0123478    0367       9          014678    

 0269       7          3          0269       4          5          1          8          06       

 4          02568      016        3          012678     01278      9          057        0567     

 015689     05689      0169       01679      016789     01789      0367       2          04567

Figure 3

Notice we now have new cells with only a single candidate left:  "07"  at (1,7) and "06" at (7,9).  An obvious thing
to try is to keep applying this "1-candidate" strategy in the hope of eventually reaching a solution, but with this 
puzzle we eventually reach a point where no cell has a single candidate:

 0135689    4          0169       0129       01239      01239      7          015        01259   
 0159       059        7          01249      0129       6          8          015        3         

 0139       039        2          8          5          01379      4          6          019      

 023679     1          0469       024679     0236789    0234789    5          0347       0478     

 03679      0369       8          0145679    013679     013479     2          01347      0147     

 0237       023        5          01247      012378     0123478    6          9          01478    

 029        7          3          029        4          5          1          8          6       

 4          02568      016        3          012678     01278      9          057        057     

 015689     05689      0169       01679      016789     01789      3          2          0457 

Figure 4



The simplest logical way to proceed is to revert to a modified form of the original process: when there is no 1-
candidate cell,  pick a cell with the smallest number of candidates (there are several above with only two choices),
create a new Sudoku puzzle from the currently partially solved puzzle trying each of the candidate values in turn 
for that cell, and see which of the resulting simpler puzzles has a  solution.   If at some point that choice results in 
a puzzle state where any cell has a candidate list of "0" (no valid choices), that indicates the last chosen value 
produces no solution.  This is a concept called "recursion", where a process performing some computation may at 
some point re-invoke itself to perform a simpler computation as part of the first computation.   It may progress to 
many different levels as long as the computation gets simpler at each recursion, so that eventually an answer 
(there "is" or "is not" a solution) can be produced that bubbles back up the chain of invocations.    This sounds like
a complex process, but many different programming languages support recursion in some form and in this case 
only minimal additional work was required to implement it.

It should be apparent that the above process is guaranteed to find a solution, or as many solutions as might exist.   
At each step either a cell value is set because there is no other choice, or when multiple choices are possible, all 
choices are tried.   Since these rules tell explicitly how to proceed at each step, this is indeed the kind of process 
that can be automated.

Implementing the above algorithm still involves some art, as there is an arbitrary choice of programming 
language, which in turn influences the choice of how to represent the Sudoku board and all the row, column, and 
sub-grid relationships and how to communicate the initial Board setup to the program.

The language used for the current implementation is ooREXX (Open Object REXX), which is one of many free 
languages available on Linux and also available for Windows.  My first Sudoku program version was written in 
Regina Rexx under Windows and Linux, and required only a few minor modifications to run under ooREXX (or 
under REXX on IBM mainframe computers under z/OS).

Simple lines of text are used for both input and output.   I wanted to expend effort on the actual puzzle solution 
logic, not on supporting fancy graphic input and output.   The puzzle is entered as one line for each initially-filled 
cell, in the format of "value row-column", as in  4 12,  7 23,  6 26,  3 29 …

The board itself is represented as an array with 81 elements whose values are a combination of cell values and 
candidate lists (Figure 2 is a an example of printing that array just after the initial puzzle definition).  Rows, 
columns, and sub-grids all act alike –  as a group of related cells where each cell within the group must have a 
different value from other cells in the same group – so it makes sense to represent them all as a "group" of cells.   
The 9 rows, 9 columns, and 9 3x3 grids are represented by an array of 27 groups, each of which lists the 9 cells 
contained in the group.  In addition there is another 81-element array corresponding to each of the cells on the 
board, which lists for each cell to what groups the cell belongs.  This structure makes it possible for the program 
to know, whenever a cell value is set, what groups (row, column, and sub-grid) it affects, and from that which 
other cells must have a candidate list adjusted.

The actual "Solve" process starts at "level 0", with higher levels only required when a trial guess with a recursive 
call to Solve a simpler Sudoku puzzle is employed.



For the example puzzle above, the program found a unique solution in 1/20 of a second as

   A Solution: 
 8 4 6 1 3 9 7 5 2
 9 5 7 4 2 6 8 1 3
 1 3 2 8 5 7 4 6 9
 6 1 4 2 9 8 5 3 7
 7 9 8 5 6 3 2 4 1
 3 2 5 7 1 4 6 9 8
 2 7 3 9 4 5 1 8 6
 4 6 1 3 8 2 9 7 5
 5 8 9 6 7 1 3 2 4
successes 1
trials  5
fail    1
Forced 1 Cand moves at level 0:  6
Forced 1 Cand moves at higher level:  62
real 0m0.048s 
 

This solution required 5 trial guesses, 1 of which produced no solution.   After finding this solution, it proceeded 
to try other candidate choices for a total of 8 trials and 4 failures, and found no additional solutions.  The 
execution time values were achieved by building data into the program to eliminate typing time.

Improving The Algorithm

After writing this program I was occasionally tempted to solve the daily puzzle by hand and found that one learns 
to use various visual clues and a combination of other techniques that would be very hard to describe 
computationally.   For example, one tends to focus first on more frequently occurring values and on rows, 
columns, or 3x3 boxes with the fewest empty cells.  Devising notations to track if the placement for a value within
a box was reduced to two cells, a single column, or single row frequently made it possible to deduce additional 
information in other boxes.  It became apparent that in most if not all of the newspaper puzzles, it was never 
necessary to  use trial and error to arrive at a solution, which suggested it might be possible to eliminate the need 
for trial values and recursion in the computer algorithm as well.  The motivation for this was intellectual curiosity,
not a need for the computer program to actually run faster, as  it typically only took 60 seconds to arrive at a 
solution and all but the last 1/20 second of that was just typing in the puzzle definition. 

One technique I found myself using by hand when the number of empty cells in a  row, column, or box got down 
to 4 or less is a technique I'll call a "value-based" move; namely, for each of the missing  values in the group, 
check to see if there is one and only one possible location for that value, which means that cell must be assigned 
that value.   It turns out the cell candidate lists already created for the 1-candidate moves can also be efficiently 
used to look for possible value-based moves.

Looking at Figure 4, where there were no remaining 1-candidate moves, look at cell (1,9) which has a candidate 
list of "1 2 5 9".   Next  look at the candidate lists for all the other cells in the upper-right 3x3 box.  The only other
empty cells in that box have candidate lists of  "1 5" , "1 5" and "1 9".   Cell (1,9) is thus the only possible location
for the value "2" within that box, so that cell must contain a "2".   Clearly adding "value-based" move support 
would allow additional progress to be made before it would be necessary to resort to trial guesses and recursion,



Support for value-based moves to check ALL rows, columns, and boxes for possible moves was added to the 
Sudoku program.  This also would be a pain to do by hand – unless desperate, one usually only tries groups with a
small number of empty cells, but doing all groups is actually easier to code for a computer than trying to 
determine which groups might be the best choices.  Initially I  wanted to find out how often the value-based 
technique was needed to bail out the 1-candidate based technique, so it only looked for one value-based move 
before resuming a search for 1-candidate moves, resorting to the candidate trial and recursion only if neither of 
those other methods could advance.

Adding that support produced the same solution but with the following statistics:

successes 1
trials  0
fail    0
Forced 1 Cand moves at level 0:  53
Forced 1 Cand moves at higher level:  0
Forced Value moves at level 0:  4
Forced Value moves at higher level:  0
real 0m0.045s 

No guesses (trials) or recursion was needed to produce this solution, and only 4 times was a value-move needed to
bail out the 1-candidate move process.

Out of curiosity, I tried one more solution process variant:   Start using value-based moves and see how far that 
would get before having to use a 1-candidate move to bail out that technique.  This produced an unanticipated 
result:

successes 1
trials  0
fail    0
Forced 1 Cand moves at level 0:  0
Forced 1 Cand moves at higher level:  0
Forced Value moves at level 0:  57
Forced Value moves at higher level:  0
real 0m0.049s 

All moves required for a solution were done using just the value-move technique!  The next 8  daily Sudoku 
puzzles tried had a similar result.   Finally on the 9th puzzle tried, I found a puzzle where there were four 
instances during the solution process where no value-based move was possible but a 1-candidate-based move 
could be made to avoid having to make a trial guess and use recursion to continue.  It is unclear whether the 
value-based technique is on average more effective, or if the newspaper puzzles are just designed in a way that 
improves the odds they can be solved using only the value-based technique.  In either case, whenever stumped 
trying to solve those puzzles manually, odds favor there being a value-based move that has been overlooked.

Sudoku Extensions

Since the NWA Democrat-Gazette is planning to stop hard-copy home delivery of the weekday paper later in 
2020,  I've been trying to read the online digital version more.  The thing that got me to thinking about Sudoku 
solutions recently was stumbling across a more difficult Sudoku variant, Killer Sudoku, in the online version of 



the NWADG newspaper, and wondering how difficult it would be to
modify my old Sudoku program to solve those as well.  See the Killer
Sudoku example to the right.    This variant has the same row, column,
and sub-grid rules as regular Sudoku.   It specifies many fewer cells, and
then defines sum-groups of contiguous cells (represented by the different
colors) that must add up to some specified number  (the small value in
the upper left corner of one of the cells), while also requiring all the
values within the sum-group also be unique.  The additional constraints
imposed by the summation groups give a unique solution with only a few
specified cell values.   

In the example above, the two-cell group starting at row 2 column 2 or
(2,2) must add up to 12, which means the two cells must have the values
(in any order) of  3,9  4,8  or 5,7.  Note that 6,6 is disallowed because that would use the same digit twice in the 
same sum-group. That means that initially this sum-group adds a candidate restriction  of 345789 to those two 
cells in addition to the candidate list imposed by regular Sudoku rules, so (2,2) which would in normal Sudoku 
have possible candidates of 12346789 would have to remove those candidates not also in the new sum-group 
candidate list, becoming 34789.  Similarly the candidate list for (2,3) of 12356789 modified for the sum-group 
would become 35789.   Once either cell (2,2) or (2,3) is assigned a value, that will reduce the candidate list for the
other cell in the that sum-group to just one choice.  With sum-groups, every time a cell in the group is assigned a 
value, the possibilities for the remaining cells in the  sum-group must be recalculated.   That's trivial for a two-cell
sum-group, but not so for groups with more cells.  The most difficult part of this extension is coming up with an 
algorithm to calculate a sum-group candidate list for the remaining cells in a sum-group.

Sum-groups are entered to the program in the format of  "sumvalue row-column1  row-column2 … ", so that the 
sum-group starting at (2,2) would be entered as "12 22 23".  Entering the definition for the above puzzle is rather 
tedious as there are 26 different sum-groups and 77 different cell references to type, and you have to carefully 
think about row and column numbers while typing.

With few initial cells specified, you are less likely to have cells with only a single candidate value or values that 
have a single placement within a group, so the candidate trial method and recursion should be needed.   Finding a 
solution took noticeably longer, but still under 1 second for the computed solution for the above puzzle. 
Exhausting 1-candidate moves first before trying to find a value-based move gave the following result:

 2 7 5 1 6 8 4 3 9
 1 3 9 4 2 5 7 8 6
 8 6 4 7 9 3 1 5 2
 3 2 7 5 8 9 6 4 1
 9 5 1 3 4 6 2 7 8
 6 4 8 2 7 1 5 9 3
 4 1 2 9 3 7 8 6 5
 7 9 6 8 5 2 3 1 4
 5 8 3 6 1 4 9 2 7
successes 1
trials  45
fail    35



Forced 1 Cand moves at level 0:  6
Forced 1 Cand moves at higher level:  153
Forced Value moves at level 0:  0
Forced Value moves at higher level:  119
real 0m0.650s 

Changing parameters to exhaust all value-based moves before looking for 1-candidate moves changed the stats to:

successes 1
trials  45
fail    35
Forced 1 Cand moves at level 0:  6
Forced 1 Cand moves at higher level:  59
Forced Value moves at level 0:  0
Forced Value moves at higher level:  265
real 0m0.966s

For reasons unclear, it appears preferring value-based moves performs less efficiently than preferring 1-candidate 
moves on Killer Sudoku puzzles (see the real time for solution), but in either case the 1-candidate technique, the 
value-based technique, and multiple-choice technique with recursion were all needed to arrive at the solution.

Maybe there are some possible shortcuts when doing Killer Sudoku puzzles by hand, but the apparent need for 
trial guesses would seem to make those puzzles much more tedious to solve manually, compared with a regular 
Sudoku puzzle!

There are many other variants of Sudoku.  I believe all can be solved by similar approaches.

  


